VMEbus is a computer architecture. The term 'VME' stands for VERSAmodule Eurocard and was first coined in 1980 by the group of manufacturers who defined it. This group was composed of people from Motorola, Mostek and Signetics corporations who were cooperating to define the standard. The term 'bus' is a generic term describing a computer data path, hence the name VMEbus.

Actually, the origin of the term 'VME' has never been formally defined. Other widely used definitions are VERSAbus-E, VERSAmodule Europe and VERSAmodule European. However, the term 'Eurocard' tends to fit better, as VMEbus was originally a combination of the VERSAbus electrical standard, and the Eurocard mechanical form factor.

VERSAbus was first defined by Motorola Corporation in 1979 for its 68000 microprocessor. Initially, it competed with other buses such as Multibus™, STD Bus, S-100 and Q-bus. However, it is rarely used anymore.

The microcomputer bus industry began with the advent of the microprocessor, and in 1980 many buses were showing their age. Most worked well with only one or two types of microprocessors, had a small addressing range and were rather slow. The VMEbus architects were charged with defining a new bus that would be microprocessor independent, easily upgraded from 16 to 32-bit data paths, implement a reliable mechanical standard and allow independent vendors to build compatible products. No proprietary rights were assigned to the new bus, which helped stimulate third party product development. Anyone can make VMEbus products without any royalty fees or licenses.

Since much work was already done on VERSAbus it was used as a framework for the new standard. In addition, a mechanical standard based on the Eurocard format was chosen. Eurocard is a term which loosely describes a family of products based around the DIN 41612 and IEC 603-2 connector standards, the IEEE 1101 PC board standards and the DIN 41494 and IEC 297-3 rack standards. When VMEbus was first developed, the Eurocard format had been well established in Europe for several years. A large body of mechanical hardware such as card cages, connectors and sub-racks were readily available. The pin and socket connector scheme is more resilient to mechanical wear than older printed circuit board edge connectors.

The marriage of the VERSAbus electrical specification and the Eurocard format resulted in VMEbus Revision A. It was released in 1981.

The VMEbus specification has since been refined through revisions B, C, C.1, IEC 821, IEEE 1014-1987 and ANSI/VITA 1-1994. The ANSI, VITA, IEC and IEEE standards are important because they make VMEbus a publicly defined specification. Since no proprietary rights are assigned to it, vendors and users need not worry that their products will become obsolete at the whim of any single manufacturer.

Since its introduction, VMEbus has generated thousands of products and attracted hundreds of manufacturers of boards, mechanical hardware, software and bus interface chips. It continues to grow and support diverse applications such as industrial controls, military, telecommunications, office automation and instrumentation systems.